EMMA: A New Platform to Evaluate Hardware-based Mobile Malware Analyses
نویسندگان
چکیده
Hardware-based malware detectors (HMDs) are a key emerging technology to build trustworthy computing platforms, especially mobile platforms. Quantifying the efficacy of HMDs against malicious adversaries is thus an important problem. The challenge lies in that real-world malware typically adapts to defenses, evades being run in experimental settings, and hides behind benign applications. Thus, realizing the potential of HMDs as a line of defense – that has a small and battery-efficient code base – requires a rigorous foundation for evaluating HMDs. To this end, we introduce EMMA—a platform to evaluate the efficacy of HMDs for mobile platforms. EMMA deconstructs malware into atomic, orthogonal actions and introduces a systematic way of pitting different HMDs against a diverse subset of malware hidden inside benign applications. EMMA drives both malware and benign programs with real user-inputs to yield an HMD’s effective operating range— i.e., the malware actions a particular HMD is capable of detecting. We show that small atomic actions, such as stealing a Contact or SMS, have surprisingly large hardware footprints, and use this insight to design HMD algorithms that are less intrusive than prior work and yet perform 24.7% better. Finally, EMMA brings up a surprising new result— obfuscation techniques used by malware to evade static analyses makes them more detectable using HMDs.
منابع مشابه
EnMobile: Entity-based Characterization and Analysis of Mobile Malware
Modern mobile malware tend to conduct their malicious exploits through sophisticated patterns of interactions that involve multiple entities, e.g., the mobile platform, human users, and network locations. Such malware often evade the detection by existing approaches due to their limited expressiveness and accuracy in characterizing and detecting these malware. To address these issues, in this p...
متن کاملCross-platform Mobile Malware: Write Once, Run Everywhere
Every day, thousands of new mobile apps are published on mobile app stores including Google Play and iOS App Store. While many of them are native apps, others are cross-platform mobile apps or HTML-based hybrid apps developed using various cross-platform mobile development tools. Native apps for Android and iOS are usually written using Android SDK and XCode tools respectively, but malware auth...
متن کاملAnalysis of Bayesian classification-based approaches for Android malware detection
Mobile malware has been growing in scale and complexity spurred by the unabated uptake of smartphones worldwide. Android is fast becoming the most popular mobile platform resulting in sharp increase in malware targeting the platform. Additionally, Android malware is evolving rapidly to evade detection by traditional signature-based scanning. Despite current detection measures in place, timely d...
متن کاملAndroid Malware Analysis Based On Memory Forensics
Live forensics solutions have long been proven powerful in various research fields. The rise of mobile platforms has created numerous new challenges for the researchers. The adoption of the widely used technologies of the traditional PC environment has limitations due to the lack of wider control over the mobile operating system. In this paper we present a new malware analysis solution for the ...
متن کاملA comparative study of static, dynamic and hybrid analysis techniques for android malware detection
With the popularity and increase in the number of smartphone users, the spread of mobile malware on Android platform has increased. Current intelligent terminal based on the Android has occupied most of the market, and the number of malware aiming at Android platform is also increasing with the increase in the smartphone users. The popularity of the smartphones, the large market share of androi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.03086 شماره
صفحات -
تاریخ انتشار 2016